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Abstract

Plan recognition techniques frequently make rigid assumptions about the student’s plans, and
invest substantial effortto infer unobservable propertics of the student. The pedagogical
benefits of planrecognition analysis arc not always obvious. We claim that these difficulties
can bc overcome if greater attention is paid to the situational context of the student'’s activity
and the pedagogical tasks which plan rccognition is intended to support. This paper
cie.scribes an approach to plan recognition called situated plan attribution that takes these
factors into account. It devotes varying amounts of cffortto the interpretation process,
focusing the greatest efforton interpreting impasse points, 1.€., points where the student
encounters some difficulty completing the task. This approach has beenimplemented anti
cvaluated in the context of the REACT tutor, a trainer for operators of decp space
communications stations,

Introduction

Plan recognition and agent modeling capabilities are valuable for intelligent tutoring (Corbett et
a., 1990; Johnson, 1986), as wcll as other areas such as natural language processing
(Charniak & Goldman, 1991 ), expert consultation (Cal istri, 1990), and tactical decision making
(Azarewicz et al., 1986). | lowever, such capabilities arc difficult to implement and employ
cffectively, for the following reasons. Plan recognition techniques can bc ri,gid--thcy assume the
agent isfollowing a known plan step by step, and have (difficulty interpreting deviations from the
plan. The modeling process can bc underconistrained, postulating mental activities that arc
difficultto infer from the agent’s observable actions. Ancxample of this style of modcling can
be seen in(Ward, 1991), where the tutor at tempts to track the student by generating production
paths that could have ledto anobserved action. 1‘inally, they tend to be unfocused--they do not
target their analysis on those situations where tutorialintervention is warranted. or  instance.,
intelligent tutors that usc model tracing (Anderson ct a., 1990) to interpret student actions tend
to intervene whenever the student wanders off of a correct solution path; this intervention policy

Portions of this paper are based onthe AAAL-94 paper entitled "Situated Plan Attribution for Intelligent Tutoring
Systems."” (Hill & Johnson, 1994)
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IS potentially disruptive and docs not appear to be basal on an analysis of whether it is
appropriate to intervenc.

This paper describes an approach to plan recognition called situated plan attribution that takes
these factors into account, Situated plan attribution analyzcs both the student’s actions and the.
environmental situation, Attentionto the situation is important because it allows the plan
recoghizer to recognize when the student must deviate from the usual plan, as well as alternative
ways of achieving the goalsof the plan. This flexibility avoids the rigidity problems of other
techniques such as Kautz and Allen’s deductive approach (Kautz&Allen, 1986), which assumes
that al possible ways of performing an action arc known, and cvery action iS a step in aknown
plan. The ability to mix goal-dirccted and reactive behavior has also been found to be important
for situated agents which must mode] the intentions of other agents (Tambe&Rosenb loom,
1994).

Context: Operator Training

The situate.[i plan attribution approach was developed anti implementedinorder to construct
anintelligent tutoring system called REACT for training human operators of complex devices.
The training domain is the operation of a communications linkin NASA’s Deep Space
Network (IDSN).The DSN is a worldwide system for navigating, tracking and communi-
cating with all of NASA’s unmanned interplanctary spacecraft.  Opcerators of the DSN are
responsible for initializing and controlling a complex array of (ic.vices, which range from the
hydraulic pumps used to move a 70-meter antenna to the software that controls the receivers,
exciters and digital spectral processor (1) P). They must be able to carry out complex
procedures accurately, as well as recognize and respond to unexpected situations when they

arise,. _
Mission: E VIT: 511
Procedures: Configure-DSP| | Coherence-Test |+ ++| Acquire-Data| »++| Playback-Data
Directives: | Load-Predicts || Set-Attenuation-Values see Select-Recording-Device

Figure 11ixample of atask organize.~i into three. levels: Mission, Procedure, Directive.  "1he
cognitive modecl treats the task organization as a problem space hicrarchy, where cach box
represents aproblem space.




‘I"asks in this domain arc organized into three levels: mission, procedure, and directive.
The mission is a description of the overall task: it has asct of goals, it has a collection of
devices assigned to acommunications link, and it has a sct of procedures, where some of the.
procedures may bec common to other mission types. Procedures also have goals, usually with
respect to the state of the devices that they affect, Tiach procedure has a sequence of directives
that will, under idecal circumstances, causc the link devices to behave in adesired manner. A
dircctive isacommand that is issued by the link operator to control a device in the communi-
cations link. I‘or each dircctive issued, adirective response is sent back indicating whether the
device accepted or rejected the direct i ve.. If the directi ve isaceepted, the operator w atches for
event notice messages and attends to subsystem displays for indications that the directive had
its intended cffect.

An example of ataskin this domain is shownin Figure 1. The mission is VIBI (Very 1 .ong
Bascline Interferometry), and it involves performing the procedures called Configure-DSP,
Coherence-Test, and so on. The Configure-DSP procedure has directives to: load the mis-
ston-specific prediction data file (1 .oad-Predicts), set the attenuation values on the
Intermediate lrequency Video Down Converter (Set- Al[ctl~~itiolt- V:il~Ics), . . . . andsclecta
recording devicce to capture the mission’s communication data (Select-1< ccor(li 1l~-Ilcvic(:).

1 iach of the directive actions involves issuing a command (e.g. the L.oad-Predicts directive is
NI.OAD predicfx-file).

1 .ooking at Iigure 1, it would appear that the tasks in this domain arce straightforward and
would require little or no training -- justfollow the mission procedure manuals. Wc have frond,
however, that this is not the approach taken by domaincxperts. Through interviews with expert
operators and system engincers, we determined that the procedure manuals only provide a subsct
of the knowledge needed to successfully perfor m a mission task. What is generally lacking in
the procedure manuals is a complete description of the required device state conditions before
andafler adirective isissued. ‘1'bus, the. expert operator possesses a knowledge of the precondi-
tions and postconditions for each directive and verifies the.sc. conditions arc satisfied before and
after cach directive is sent. Operators who lack this knowledge may find it difficult to complete
cven simple procedures, since the directi ves may be rejected, or worse, put the device into an
incorrect stale for the procedure or mission. 'or example, (me. of the preconditions for the 1.oad-
Predicts directive is that the predicts-file being loaded mast be present on the system. If the
Load-Predicts directive is issued for the predicts- file. named "JK" (i.e., NLLOAD JK), it willbe
rejected i afi]c by that name is not present in the predicts file directory.

Devices may enter unexpected states due fo failures. 1 ‘urthermore, commands may have un -
cxpected effects when issued inthe wrong Situation. In either case, to become an expert operator

requires learning torecognize the device state. requirements (i.e., preconditions and
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postconditions) for each directive in every procedure. It also requires understanding the goals
associated with cach procedure, since. in many instances it is necessary to work around device

state anomalics in order to complete the procedure.,

1 mpasse-Driven Tutoring

Interactive simulations can be quite effective for training complex, situated tasks such as 1DSN
operations. The REACT tutor is such a simulation-based training system. The student practices
carrying out various missions, by issuing dircctives to computer simulations of the real devices.
They thereby become more facile with the mission procedures, and gain experience in dealing
with the various anomalous situations that may arise. The initial version of the REACT tutor
incorporated custom-built simulations of tbc devices in the DSN communication link. Our
current work makes usc of the RIDES simulation authoring package (Munroct a., 1993) asa
base.

Yet it was evident from the beginning that a simulation aone wouldbe insufficient as a
training system. It is not always cvident to novices, or e¢ven to experts, why particul ar dircctives
fail andarcrejected. This canleadto confusion or frustration on the part of the student.
Furthermore, it is not always apparent at the time whether a given mission was successfully
completed. This is a serious problem for DSN operations: incorrect configuration can cause the
data being collecied from the spacecraft to be garbled and meaningless, and this may not be
discovered until weeks later when scientists inspect the data that was collected. Therefore, it is
apparent that some form of on-line guidance or coaching is nccessary inorder to ensure that
students learn effectively.

Inorder to determine how best to design a tutor for this task, a cognitive model of students
interacting with simulated devices was constructed (Hill&Johnson, 1993a). One of the key
conclusions from this study is that tutorial interaction should center around impasse points. An
impasse is defined in this work to be an obstacle to problem solving, thatresults from either a
iack of knowledge or from incorrect knowledge (1 1i11,1993; Brown& Vanl .chn, 1982; Vanl .chn,
] 982, 1983). Our results agree with tile. results of carlier studies (e.g., Vanl.chn,1988) that
suggest that such impasse points arc natural lcarning opportunitics. When the student is at an
impasse, he or she naturally seeks information that can be used to overcome the impasse and
continue the task. Information offered by the. tutor at such points is readily accepted and
assimilated.

These conclusions arc the motivation for the approach to tutoring taken in the REHACT syst cm,
cal led impasse-driven tutoring. Inanilll3>:tssc-(iii\' cll tutoring system, the student is called upon
to carry out specific tasks; ill REACT's case, these tasks arc missions performed with simulated
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devices. The tutor monitors the student's actions, but aslong as he m’ she appears to be making
progress, it does not intervene. If on the. other hand the student appears to be at animpasse point,
the tutor will offer suggestions as to how to resolve the impasse and procecd with the task. The
tutor interrupts the students only when their actions arc so faulty that they it will be difficultor
impossible for them ever to complete the task, and there is no obvious cuc from the simulation
that things arc going wrong.

InREACT's particular case, student is assumed to have some understanding of operational
procedures. lowever, the devices may be inuncxpected states or behave inunexpected ways,
the student must learn to recognize such situations and deviate from the standard procedures as
necessary. REACT recognizes when the student has reached an impasse, because the student's
action has failed or cannot achieve its intended purpose in the. devices' current state. It then
coaches the student through the impasse.

A tutor thatis sensitive to such impasscs docs notrun the risk of annoying the student with
interruptions--the student's problem solving has already been interrupted by the impasse. The
tutoring system nced notintervene in a heavy-han(icd fashion; it can serve as an information
resource that the student can turnto for assistance as nceded. The student therefore has a greater
sense of cent rol over how the task is performed.

Situated Plan Attribution

The question that is the focus of this paper is how best to track student performance in asituated
activity such as device control, insupportof impasse-driven tutoring. Previous approaches to
student tracking have serious deficiencies in this context.  Some do not provide the flexibility
needed for such dynamic domains. Othersincur substantial computational and development
costs to gencrate information about the student that is of little value for the. tutor. The situated
plan attribution approach implemented in REACT avoids both sets of problems. It is highly
flexible, able to cope casily with deviations from normal mission procedures. It is specificaly
designed to identify potential impasse points, and to understand chough of the student's plan to
be able to offer uscful advice at those points. This means that much of the computational cost of
typical plan recognition or student modeling techniques can be avoided. Our stance IS thus
consistent with that of (Self, 1990), who argues that to make studentmodcling tractable onc must
focus onrealistic, useful objectives.

Plan recognition approaches such as that of (Kautz.&Allen, 1986) arc inappropriate for
domains such as the )SN because they make unrealistic assumptions. Kautz and Allen, for
example, assume tha both the observer and the agent have complete and correct knowledge
about possible plans. In the DSN domain there is a standard set of procedures, which can serve
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as the basis for aplan library. However, the plans do not aways work, and the students do not
always know when they can be expected to work. Systems such as PROUS'T (Johnson, 1986) do
notmake such strong assumptions, and arc able to interpret a variety of buggy plans; however,
they require detailed knowledge of the kinds of plan deviations that may be expected. Others
such as (Calistri1990) require knowledge of the probabilities of various misconceptions. The
computational costs of plan recognition systems can be quite high: Kautz and Allen’s technique
involves automated deduction, and other systems such as thatof (Murray, 1986) and (Allemang,
1990) rely on theorein proving to determine whether or not the student's plan is correct,

Asit turns out, complex plan recognition algorithms are largely superfluous for situate.d tasks.
The above approaches assume that onc mustanalyze the plan in order to determine whether m
not it is faulty. Butin domains such as the DSNone need simply monitor the execution of the
plan and scc whether or not it bas the desired effect. I the directives issucd by the student arc
rcjected, then the plan mustbein error, and analysis of why the rejection occurred can help
pinpoint the error. If the plan executes successfully, and has the dc.sired effect, then it must have.
been comet; at any rate no tutorial intervention is warranted, because no impasse occurred.
Therefore the situated plan attribution approach involves simultaneous monitoring of the
student’ s actions and the simulated environment, without expensive plan analyses.

Modecl tracing systems such as that of (Anderson ct. al, 1990) cncounter difficulties that arc in
many ways similar to thosc of plan recognition systems. Inthe mode] tracing approach, an
cxecutable model of the student’s performance is constructed.  Fach student action is matched
against the model, in anattempt to predict and accountfor each action, such cxecutable
cognitive models can be quite detailed--in extreme cases such as the systemof (Wad, 1 991),
internal cognitive processes such as perceptionarc modeled as WC]]. Since such mental
operations arc not dircctly observable, the matching process becomes ambiguous and intractable.

The situated plan attribution approach adopts some of the features of the. model tracing
approach, whilc avoiding, thc problems that incrcase computational cost, It tracks the student's
plan at an abstract level, at the level of missions and high-level procedures. This corresponds to
modecltracing in the sense that the system follows what the student is doing onthe basis of its
knowledge of how to carry out the task. 1 lowever, an exccutable cognitive mode] is not usually
required. The system traces the student by recognizing actions that arc consistent with the
expected plan.  Actions that the., syhstem does not recognize arc ignore.d, unless they have an
undesirable, effect on the state of one or more device.s. An cxcecutable cognitive model, based on
the one mentioned in the previous section, is employed, but only whenan impasse is detected
and the. plan is found to bc inappropriate for the current state of the devices. Furthermore, the
cemphasis here is not on inferring crrors in the student’s knowl edge but in determining what

knowledge an expert would require inorder to overcome the, impasse..  Thus computational effort
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is limited only to what 18 required in order to help students resolve jmpasses.  Furthermore, cl-roll

decreases over time, because whenever the system employs the expert cognitive model to
analyze the situation, it remembers the results of the analysis for usc in similar situations.

We estimate that there arc many real-world skills whine feedback from the environment can
guide the problem solving problem solving process asin REACT. Intelligenttutoring systems
tend to overlook the role of the environment because they arce frequently applied to abstract
domains such as geometry or subtraction. 1 iven in these. domains there may be useful
environmental cues to exploit. For example., intelligent tutors for programming tend not to take
advantage of feedback from actually running the student's program, athough rc.cent work such as
G]]. is making such feedback more readily available to the student (Reiser et a., 1989)

Example Problem

Toillustrate how REACT works wc will now dc.scribe anexample from our task domain.
Studentsarc assigned missions thatinvolve activitics such as configuring and calibrating a set of
communications devices, establishing a link to aspacccraft, recording data from the spacccraft,
and transferring the rccorded data to a control center. These tasks involve sending commands
asynchronously via a computer terminal over alocalarca network to the dc.vices. Standard
command secquences for each type of mission arc defined by procedure manuals. The devices
initially respondto each command with anindication of whether the command is accepted or
rejected; if aceepted, the devices require time to change stale.

Configure-DSP Coherence-Test
_ _command Description _ ____ Command Description
NILLOAD x Ic)a(l-lteclicts-file NPCG x set NPCGmiode
NRMED x select-recorder NRUN x run NCB program
SAT x S-band at(enuation NDTE x enableDT1¢
NTOP xy set temperature NHT x cnable NHEFY
0I's'l x seto ffset time

Figure2: Iixample procedures

Ligure 2 shows two procedurcs. The first procedure, Configure-DSP, isuscd to configure the
DSP subsystem, which is used for spectrum processing. The steps mostly involve loading or
sctting parameters and selecting devices. The second procedure, Coherence-Test, is used to test
the continuity and coherence of the communications link; it IS supposed to be exccuted after the
Configurc-1ISP procedure has been completed.

We will walk through the example shown in Figure 3 to illustrate how REACT overcomes the
impediments to plan recognition. 1lere astudent begins with Configure-Tysp's first command for
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loading the predicts file, N] .OAD JK. Line Ishows the. N] .OAD command, and line 2. shows the

device's response, C OMPLIITED, indicating that the command was accepted. 1 iverything is

proceeding as predicted by the plan: the correct command was issued by the studentand it was

accepted by the device.

1

Commands 7 Responses

REACT's Explanation

BwW R =

15
1
17
1§

15
20
21
272

>NLOADIJK

>COMPLIITED.
>NRMEDI.DO

>REJECTED. | DODISABLED

>1.D0 1
> COMPLETED. 1.10: ONI N
>NRMED DO

> COMPLETED.

>SA'T 55

> COMPLETED.

>N10P 20.() 30.0

> COMPLITTED.

>NPCG MAN
>COMPLETED.

>0IS8T 2.7

> COMI'Y1 1111 ).
> NRUNCOI1.D
> COMPLETED.

>NDTI I
> CO PLETI ii).
> NIEFT |

> COMPLETY D,

The NRMED command failed because one of its
preconditions was unsatisficd: 1 .10 should be in the
ONI .INF mode instead of the OFFIINL mode. To
resolve the impasse,

Issue the command: 1 /1)()14, Then

Issuc the command: NRMED 1.1)()

You started the Coherence-"Test procedure before yern
finished the. Configure-1)S1’ procedure.
Issuc the Command: 01's 1’ <>

You failed to achicve onc of the goals of the Configure-
[) S}) procedure: SA'T = 12.

Issuc the command: NID1.1{ REC, Then

Issue the command: SAT 12

Figure 3: Ancxample of tutoring with REHACT

Things geta bit more complicated on lines 3 through 7. Online 3 the student issues the next
command in the Configure-IX3P plan, NRMI:D. This command follows the Configure-DSP plan
cxactly, but the situation actually requires a different actionto be taken, 1 .DO L, (i.e., enable

recorder 1.130), which is why the. commandisicjectedon line 4. I{}{ AC'I' thus mustrccognize
when deviations {rom the plan are warranted; it does this by first noting the reject ion and

reasoning about why the action was not appropiiate. in this case the. command was rcjected duc
to anaction constraint violation (i.e., an unsatisfied precondition) by the NRMED command.
REACT explains its reasoning about the. violation as well as deriving a way to resolve the



difficulty. The difficulty is viewed as an impasse because it prevents the student from continuing
with the procedure, and it suggests a gap in the. student’s knowledge--if he had a good grasp of

the procedure, he would have. knownto check the state of recorder 1.1D0 before selecting it. At
line 7 the student issucs the NRMED command a second time; the plan calls for it to be issued
just once. The second occurrence of the command is determined to be appropriate. given that the
{irst attempt at this action failed.

The example next illustrates difficultics that arisc when the student follows a plan but fails to
achicve its goals. The commands and responses on lines 9 through 14 follow the Confi gu re-DSP
plan exactly and all of the commands arc accepted by the device. | lowever, the parameter value
of the SA'T" (Set S-Band attenuation value) command, 55, will notachicve one of the procedure's
goals, that the valuc shouldbe1 2 by the time of the procedure's completion, This goal is not
explicitly stated in the procedure, rather, it is derivable from the mission support data provided to
the student. If the student dots not correct this setting, it will affect the quality of the
communications link with the spacecraft and of the data being recorded. Failure to achicve a
goal is another type of impasse that canoccur when a student is performing a task, indicating
another type of knowledge gap in the student's skill set. REACT gives the student the
opportunity to correct the crror alone, but will intervenc if not, before it is too late to correct it.
When it detects the NRUN COL.1 (i.c., run NCB program) command on linc 19, that belongs to
the Cohcrence-Test plan, it initiates the interaction concerning the unsatisfied goal. in this case
REACT also employs its expert cognitive mode] toanalyzc the cause of the impasse and
determine asolution.

The final point made by the example centers on the actions listed onlines 15 through 18, On
line t 5 the student sends the NPCG MAN (i.e,, set the NPCG device to manual mode) command,
which is the first command in the Coherence-Test procedure, prior to finishing the Configure-
DSP procedure, which has OFST (sct the offset time)as its last command. This is a
straightforward case of misordered plans, and REACT immediately alerts the student that a step
was missed prior to starting the new procedure (see line 16). REACT recognizes this type of
impasse as a plan dependency violation.

How REACT Works

'Three types of impasses were introduced in the above example: (@) action constraint impasses,
where the student takes an action that is in the plan but which the situation docs not warrant, (b)
goat failure impasses, where the student completes a plan without having achicved its goals, and
(c) plan dependency impasses, where the. student executes aplan before successfully completing
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onc of its required predecessors. Wc will now give the details of how REACT recognizes and

resolves cach of these types of impasses.

Soar cognitive architecture

REACT is implemented in Soar, anintegrated problem solving andlearning architecture that
implements a theory of human cognition (1 .airdet a., 1987; Newell,1 990; Rosenbloom &
Newell, 1986). The Soar architecturcembodiecs the concept of problem solving as a goal-
oriented activity involving the search for and application of operators to astale inorder to attain
some desired results. ‘I’asks in Soar arc represented and performed in problem spaces. A Soar
problem space consists of a collection of operators and states. Search takes placeinthe
hierarchy of problem spaces. Opcrators are proposed, sclected, and applied to the current state;
the resulting state changes may cause other operators in the. problem space to be proposed,
selected, and applied, which goes on until the goa of the problem space is achicved. Impasses
occur in Soar when the problem solver stops making progress. 1o resolve an impasse, the Soar
problem solver creates a subgoal and sclects a different problem space where other operators arc
available for solving the problem. When subgoal problem solving is successful, the results arc
saved innew productions created by Soar’s chunking mechanism, which also save.s the
conditions that led to the impasse in the first place. Thenext time the conditions occur the
learncd chunk will be applied instead of having to search for an operator in the goal hierarchy.
‘1'bus, tile problemspace hierarchy is scarched via subgoaling, and lcarning occurs when a
subgoal yiclds a result.

Knowledge representationin REACT

R] {ACT models scveral other aspects of plans besides the component actions shown in 1 ‘igure 2,
as will be briefly described below. For cachtype of mission the temporal precedence
relationships among the plans is modcled with a directed graph structure. called a temporal
dependency network (TDN) (Fayyad& Cooper, 1992). A plan has a name and three attributes:
state, cxccution status and goal status. The state of a plan can be either active orinactive; a plan
is considered to be act ive once al of its predecessors in the TDN have been successful 1y
completed. It is inactive prior to being active, and it becomes inactive again once it has been
successfully completed. A plan's execution status (incomplete or complete) is determined by
whether all of its commands have been observed. 1 iach plan’s goal stat us is marked satisficd if
all its goals have been satisficd, otherwise it is unsatisficd.

Plans have two entitics associated with them: operators (commands) and Seals. The operators
for the plans named Configure-DSP and Coherence-Test are shown in 1digure 2.. 1 ‘ach operator
has a set of preconditions. A precondition is atuple representing a device state that must be true
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before it can be considered satisfied. Similarly, a plan goal is also a tuple that represents a device

state. As will be seen in the following sections, an active plan's goals are individually monitored
for satisfaction at all times.

Problem solving organization of REACT

The problem solving in REACT is organized into two high-level activities: plantracking and
impasse interpretation.  Plantracking involves watching the student interact with the
environment and deciding whether the student's actions arc appropriate for the assigned task and
sit uation. An inappropriate action is classified into an impasse category, and REACT interprets
the impasse by executing an expert cognitive model to explain the impasse and to suggest repairs
to the. procedure that will overcome it. The resulting explanationis used for tutoring the student.
Plan tracking isimplemented by performing the following activities:

. Perceive objects in the environment: REACT must continuously monitor the attributes of each
of the objects in the environment. The perceive-object operator in Figure 4 initially perceives
each of the objects in the environmentand registers them in R X ACT’s working memory. These
attribute values arc updated as the objects are observed to change state in the environment.

.Meonitor and e valuate studen1 actions: Yachof the student’s actions is observed and matched
with a plan. During the plan matching, preference is given to active. plans over inactive plans.
1 .ikewisc, the effects of the action on the device arc also evaluated to determine whether the
action was successfully completed or not.  If anaction was unsuccessful, it is immediately
classified as an action-constraint impasse. Regardless of the action's outcome, the plan
containing the action is marked with the match. If the action docs not match any active plan but
(Loc.smatch with aninactive plan, then REACT recognizes that a plan-dependency impasse has
occurred. All the activities for cvaluating individual actions arc performed by the analyze -

act.ion—response operator and its associated problem space; every (lii.cctive-].e.s])o]lse pair is
analyzed by subgoaling into the. analyze-acti on- response problem space, where the plan
matching andimpasse recognition occurs, Subgoaling into this problem space occurs regardless
of whether the student did what was cxpected or not, and chunks arc built each time the subgoal
successfully terminates. ‘The resulting chunks eliminate. the ncedto subgoal into this problem
space the next time the same situation occurs.

. Monitor individual goal status: The achicvement status of the individual goals of active plans
is continually monitored. A plan’s goals begin to be monitored when the. plan becomes active;
monitoring ends when the plan is inactive.. The recognize - desi red- results operator
tests for satisfied goals, while the recognize - undesi red- results operator tests for
unsatisficd goals.
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. Monitor conjunct ive goal status: In addition to testing for the satisfaction of individual goals,
REACT aso continually monitors whether the conjunction of a plan's goals has been achieved.

The recognize-goal-completion operator tests for the conjunctive satisfaction of a plan's goals.

. Monitor plan execution status: Besides monitoring whether @ plan's goals have been achicved,
REACT aso monitors whether all of a plan's actions have been matched. The plan is marked
C OMPLETED once all of its actions have beenobscerved. The recognize- plan-

completion opc.rater is responsible for monitoring a plan’s execution status.

top-level problem Space

-

* perceive-object

. recognize-desired-results

¢ recognize-undesired-resulls 4 resolve-goal- failure-impasse

* recognize-goal-completion / resolve-action -constraint-impasse
. recognize-plan-completion // e resolve -plan-dependency-impasse
. analyze-action-response,

¢ evaluate-plan resolve-plan -

dependency-impasse
problem space

plan
analyze-action-  evaluate-plan
response problem space
problem space

roblem space

verify-precon ditions  repair-UNSA T-precondition  verify-postconditions

problem space problem space problem space
LEGEND:
< problem space * operator / subgoal relationship
plain text -- plan tracking italicized text -- impasse interpretation

Figure 4: REACT's problem space hicrarchy

o I'valuate comple ted yip s: 1f a plan marked "completed™ has unsatisficd goals, then REACT
recognizes that a goal-failure impasse has occurred. The evaluate - planoperator is used to
perform this analysis--it subgoals into the eva 1 uate - p] anproblem space where a
determination is made of whether the completed plan has satisfied its goals. Chunks arce built
summarizing the results of the evaluation, once a determination of whether or not a goal failure
impasse cxists.

Impasse interpretation, which is performed by the. italicized Soar problem spaces shownin
1igure 4, is implemented by performing the following activities:
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. Resolve a plan dependen ¢y impasse: REACT first determines which plans should have been
active at the time that the student took the inappropriate action. The situation may have
warranted a deviation from the standard procedure, c.g., the precondition of an action was
unsatisfied. RI:ACT checks the cffects of the student's actions to dctc.mine whether it satisfies a
precondition or else satisfies a goalof onc of the plans. If either of these. cases is truc, the
impasse is interpreted to bec a situationally warranted deviation, and no further interpretation is
necessary. On the other hand, if the action cannot be justified by the sitvation, then R] {ACT
notifics the student of the violation of the planordering. The resolve-plan- dependency -
impasse operator is initially selected for these. tasks, and it subgoals into a problem space by
the same name where the interpret ation steps just described are t aken.
. R esolve a goal failure impasse: When agoal failure impasse is detected, REACT selects the
plan where the goal failure impasse occurred and determines how toachicve the unsatisfied
goals. It reviews the plan, which contains seme nistory Of how the student executed its actions,
by chc.eking the operators related 10 the unachicved goals to determine whether the student sent
the. correct parameters with the action, REACT internally simulates the execution of the plan by
selecting the appropriate action operators, verifying its preconditions are satisfied, repairing any
unsatisfied preconditions, and verifying that the actions postconditions are satisfied. To repair
anunsatisfied precondition may involve, recursively selecting and applying other actions in the
same manncr. REACT follows this process until the. plan's goals arc achicved. In the process of
solving the problem, REACT generates an explanation for tutoring the. student about the impasse.
Note that the steps justdescribed for resolving a goal failure impasse arc graphically portrayed
inl‘igurc 4 as a hicrarch y of problem spaces, beginning with the operator cal led labeled
resolve-goal—Tailure - impasse, which subgoalsinto the plan problem space. It isin
t hc plan problem space that the individual pan operat ors are checked. If an operator is suspected
as the causce for the goal fail ure, it is selected and subgoals are formed for the operator and
subscequently to verify its preconditions and so on.  As in the other cases where there is
subgoaling, chunks are formed that save the results of the analysis for use infuture situations
where the same goal failure occurs.

. Resolve an action constraint impasse: REACT handles this type of impasse in much the same
way as a goalfailurc impasse. The main difference is that it focuses on how to corrcctly apply a
single operator within the plan rather than on the achicvement of the goals of tbc whole plan.
lence, the resolve- acti on- const raint-inmpasse operator subgoals into the plan
containing the suspect opcrator, andimmediately subgoals into the plan-operator's problem
Space. As with the case of a goa failure impasse, subgoalsarc aso formed to verify the
operator's preconditions, repair unsatisfied preconditions, and verify its postconditions.
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The problem solving in REACT bears a resemblance to the. approach in CHIEY (Flammond,
| 990): the general strategy iSto notice afailure, build an explanation for it, use the. explanation to
determine a repair strategy, and so on.  REACT's repair strategy emphasizes treating failures
related to unsatisfied preconditions, which is similar to CHEFE, but REACT generates repairs on
the fly rather than using a case-based approach. Inaddition, certain types of repairs donc by
CHEl' are not appropriate in REACT because they would imp] y intervening before the impasse
was clear to the student. REACT permits the student to fix problems; the tutor only intervencs
when it is clear that the student has recached an impasse. in problem solving.
Example revisited
Toillustrate how REACT works, we will revisitthe previously used example shownin Figure 3,
focusing on the action constraint impassc that occurred onlines 3 and 4, where the studentissued
the NRM1 ‘D 1.0 command and it was subscquently rejected. The command-responsc pair on
lines 3 anti 4 is detected by the. anal yze-acti on- response opcrator (Figure 4), which
subgoals into the anal yze-acti on-response problem space where the NRMED command
is matched to the active plan called Configure-1ISP (Figure 2). Since the command was rejected
by the ssmulator, the. operator sets aflag indicating an action constraint impasse. and the subgoal
terminates. Then the resolve-action-constraint-i mpasse operator is sclected and a
subgoalinto the Configurc-1>SP Plan problem space is formed. The operator corresponding to
the NRMED command called select - recording - device issclected and it subgoals into
the select-recording - device problem space (shown as Plan Operator Problem Space in
| igure 4.) A subgoal into the. verify- preconditions problem space is made for each of
the sg] ect-recording - device operator's preconditions. AS it turns out, the precondition
that says that the recording device being selected must be inthe ONI INE mock is unsatisficd.
This is where the first part of the explanationon line 4 in Figure 3 is gencrated. Next, REACT
subgoals into the repair-UNSAT- precondit.ion problem space., where it is determined that
issuing the 1.110 E (enable recording device 1 -130) command will satisfy the precondition. This
information is also put into the explanation onlinc 4 of the example. Finally, once the
precondition is satisficd, the se] ect-recording- device problem space simulates sending
the NRM 11111.110 command (select the recording device named 1.120), and thisis aso added to
the explanation and this subgoal terminates. Since REACT has determined how to resolve the
impasse., all of the. subgoals in the hierarchy terminate and the impasse recognition operators
resume. their work with the next action-response pair.
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Tutor Improves with Experience

RI {ACT was implemented to take advantage of Soar's learning capability. One consequence of
having atutor that learns is that its efficiency improves with experience. Since it is desirable to
interact with the student as closc to the impasse. point as possible. (1ill & Johnson, 1993a), a
highly efficient problem solving scheme iS desirable. AS the tutor gains experience witn
different student impasses, the knowledge of how torecognize and interpret these impasses is
summari zed in new Soar productions called chunks.  The chunks improve the tutor's
performance significantly, since they limit the amount of scarch required to solve a similar
problem again.

The second consequence of having a tutor that Iearns is that it affects thetutor'sarchitecture.
REACT's architecture effective] y changes aslearning takes place: the tutor's knowledge becomes
more procedural as it gains expericnce, and it becomes more integrated and | ess

compartmentalized.

Recognize Interpret Ratio: Before/Afler
Command Impasse Impasse Total
Belore Afler Before After Before Afler
NILOAD 0.20 0.08 8.70 (.61 8.90 0.69 13::1
SA'T 0.19 0.08 2.70 0.32 2.92 0.40 7:1

‘1’able 1: Performance (insecconds)for recognizing and interpreting an action constraint violation
impasse before anti after chunking

Lfficiency Improvement: Impasse Recognit ion Chunks

REACT's ability torecognize impasses improves each time it successfully recognizes a
previously unobserved studentaction. 1 ‘or example, each time the REACT tutor subgoals into
the anal yze - act. i on-response problem space (Figure 4), successfully matches an action
to aplan, and determines whether there is an impassc or not, chunks are built that summarize the
problem solving that occurred in that subgoal problem space. The next time that REACT sccs
the same. action under Similar circumstances, it will not create a subgoal and scarch for a match
because therc will be a set of chunks that recognize the action and know how to interpret it. The
result of having chunked knowledge is that impasses can be recognized more rapidly since less
search isrequired.

Table 1 shows the amountof time it takes to recognize an action constraint impasse involving
the NILOAD and SAT commands before. and after chunking. Inboth casess the impasse
recognition time was reduced by over fifty percent using chunks. Before chunking it took
approximately 0.20 seconds to recognize an impasse and after chunking to took ().()8 scconds.
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Efficiency Improvement: Impasse Interpretation Chunks

Besides using chunking to improve the impasse rccognition process, REACT also takes
significant advantage of chunking when interpreting the impasse. After the recognizing the
impasse, the next step is to explain the nature of the impasse and determine away to resolve it.
To illustrate how chunking affects impasse interpretation, refer againto the problem space
hicrarchy shown in Figure 4. If anaction constraint impasse is detected thenthe res o lve -

act.ion- Constraint-impasse operator is selected and the problem spaces below this
operator arc scarched untilan explanation is gene.rated. In the process of generating the
explanation, chunks are created that summarizc cach step of the search for an explanation. For
instance, in the case of the action constraintimpasse involving the NRMED command online 3
of Figurc 3, each of the preconditions for the command arc verified in the verify -

preconditions problem space. in tile process of verifying these preconditions, chunks are
builtto do this task the next time the¢ NRMED command is involved in an action constraint
impasse. ‘1'bus, whenever REACT subsequently recognizes that a student is atan impasse with
the NRMED command, it willautomatically fire the chunks verifying the NRMED command
preconditions without needing to subgoal through the problem space hicrarchy the way it did the
first time.

Architectural Impact of Chunking

As wc mentioned al the beginning of thissection, there arc two consequences of having a tutor
that improves with experience. The firstof these consequences, improved efficiency, is tile
driving motivation for incorporating lcarning into the tutor's implementation.  Improved
efficiency make.s it possible to conduct atimely interaction with the. student. “rhere is a second
conscquence of learning, however, that flows out of the use of Soar’s chunking mechanismin
REACT. The chunked version of RIEZACT that emerges over time has its tutoring knowledge
compiledin a form that no longer has distinguishable modules or problem space.s. The original
problem space hicrarchy that generated the chunks still exists butis not used unless a novel
situation occurs. Instead, REACT's problem solving eventuall y take.s place inone problemspace
at the. top level, where. it fires chunks for recognizing and interpreting student impasses.

The architectural impact of chunking, then, is that as a tutor lcarns, its knowledge is compiled
and centralized, so to speak, into onc problem space. The result is ancfficient tutor that can
interact in real time with a student. The resulting architecture. looks different than astercotypical
intelligent tutoring system (Burns & Capps, 1 988) that contains modular picces labeled expert
model, st udent model ;| tutor model, and so on.  Though wese arc identifiable functions in
REACT, they cease to have relevance from an architectural point of view once the knowledge of
these functions has been compiled. Our approach contrasts with the way that Warren, Goodman
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& Maciorowski (1993) have proposedto engincer 1'1'S's, whereby the traditional 1T'S functions
arcimplemented in separate communicating modules. We prefer to view the intelligent tutor as
anintegrated agent whose architecture emerges as it learns.  The functionality remains while the
architecture changes.

Generality of Chunking-Based Plan Recognition

‘1'here arc particular features of the 1 decp Space Network domain,andof REACT's situated plan
attribution algorithm, that arc particularly conducive to chunking. 1'hesc are summarized below,
in order 10 give the reader a better sense of how chunking-based plan recognition might be
applicdto other domains.

REEACT's tabular representation of plans facilitates recognition of ordinary plan steps, cven
without chunking. The tutor (locs Not have 10 search through a large. space of possible student
actions in order to find ones which match the. student's actions. Although chunking canbe
employed regardless of the size of the search space, having a small search space offers practica
advantages. 1t is not nccessary to train the tutor extensively ahead of timein order to obtain
reasonable real-linm response, since the tutor is cfficient enough to analyze unfamiliar student
actions as they arise. Iurthermore, chunks generated from large. search space.s canoften be
highly specific: the left hand sides of the chunks tend to grow insizc as the amount of search
increascs. Therefore each chunk that REACT builds is more likely to be applicable to future
student actions.

In general, chunking iS most effective when the problem space being scarched is fi cc of
uncertainty, and the problem solver is ablc to determine precisely what the conditions are that
lcad to the result that is saved inthe chunk. Otherwise the chunks thatare produced may be
overly general, and apply insituations in which they shouldnot. This poses potential problems
for plan recognition, which is fundamentally abductive in nature and must make. plausible
inferences about what the agent being watched is doing. If the planrecognizer observes the
student performing an action, and jumps to a conclusion that a particular plan or plan step is
being carried out, the chunk that is produccd will cause the planrecognizer to jumpto the exact
same conclusion every time, even in cases where there is evidence for analternative
interpretation. This problem dots not arise in R] JACT in part because plans in the DSN domain
arc relatively unambiguous; the system can aways tell what plan the studentis working on.
1 lowever, it also helps that REACT bases its analysis on observed actions and dcvice responses,
and avoids extensive reasoning about hidden mental states. Since REACT dots not jumpto
conclusions about the student's mental state,, it docs not create chunks that jump to conclusions
either.




At the. same, we recognize that ambiguity andindeterminacy arc inherent features of the plan
recognition process, and must be accounted for. We believe that the RE ACT approach can be
cxtended to other planrecognition problems, where interpretation of student actions is more
ambiguous. ‘J here arc two possible ways of accomplishing this. Onc is to dclay interpretation
and chunk construction until enough student actions have been observe.(1 that the. plans can be
unambiguously recognized. Another approach isto keep track of the degree of uncertainty
assigned to each interpretation of student actions, and avoid reliance on chunks that depend on
assumptions with a high degree of uncertainty. These approaches are the subject of future
research.

Evaluation

A pilot study was conducted to evaluate REACT. Wc hypothesized that situated plan attribution
would be able to recognize and interpret student impasses and that the resulting tutoring would
help students acquire skill in the 1.MC domain. The study was conducted with seven students of
approximately equal experience who were divided into two groups. The difference between the
two groups was that Group ]’s students were tutored by REACT during the exercise, while the
Group 1 Istudents did not reccive any tutoring. 1 ‘ach student was assigned a task to perform on
the 1.MC simulator, where the assigned task was performed by the student six times under
different starting conditions so that different types of action constraint and goal failure impasses

would potentially occur.

C1:Did the tutor correctly interpretall of the "cortect” actions under normal - circumstances?

C2: Did the tutor correctly interpret student deviations from the default procedure when there
were no situational factors requiring the deviation?

(3: Did the tutor correctly interpret student deviations from the. default procedures when they
were inrcaction to situational factors?

C4:Did the tutor recognive when the student failed to achicve a goal’! Was itable to explain the
goal failure?

C5: Did the tutor recognize al action constiaint violations ? Was it able to explain the action
constraint violation?

Table 2: 1 evaluation criteria for effect ivencss of Situated Plan Attribution

To evaluate the effectiveness of situated plan attribution the evaluation criteria shownin Table

2 were used. The goal for this part of the evaluation was to determine how well REACT was

able to understand the student's behavior inmaking a decision of whether or' not to provide

tutoring. Since REACT is an impasse-driven tutor, this means that it has to bc able to detect

impasscs as they arc previously defined and avoids making a false detection. 1 lence, C | asks

whether REACT recognized all of the actions taken by the students that one. would expectthem
18




to take under nominal conditions. C2 through C5 cover each of the three impasse types (i.e,
action constraint violations, plandependency violations, and goal failures). C2 and C3 address
the variations of recognizing whcther a plan dependency violation has occurred or not; C2
covers the impasse case and C3 covers the case where a deviant action is warranted by the
situation. 4 asks whether thetutor was able to recognize and explain when the student failed to
achicve the goals of a plan, and CS asks whether individual action constraint violations were
recognized.

Results

The results of the pilot study suggest thatsituated plan attribution holds promise as a method for
recognizing student impasses and for explaining how toresolve themina satisfactory manner.
During the study REACT interpreted 604 different command-response pairs (actions) performed
by the students. It recognized and explicated 5 plan dependency impasses (C2), 36 actions that
deviated from the plan but were warranted by the situation (C3), 17 goal failurc impasses (C4),
and 36 action constraint impasses (C5).In anal yzing the event logs, wc found that RI:ACT did
not make any misinterpretations, and it was able to make all of its analyses quickly enough for a
timely interaction with the student (refer to *1'able 1 to get an idea of how the interaction times for
the action constraint impasse.)

Cumulative (C2) Plan (C3) Actions (C4) Goal (C5) Action
Action Dependency Situationally Failure Constraint
Total Impasses Warranted Impasses Impasscs
Subjectet 1 1 8 0 6 0 3
Subjectct 2 - 91 0 7 4 2
~Subject3 86 0 5 0 8
Subjectet 4 79 2 4 6 5
Subjectt 5 83 3 4 0 4
Subject:t 6 ) 99 0 5 6 6
Subject 7 85 0 5 ! 8
Totals 0604 5 36 17 36

Table 3: Cumulative Results of Situated Plan Attribution

The study also suggests that the way situated plan attribution was applied (i.e., for impasse-
driven tutoring) helped students to improve their skills in the 1.MC domain more quickly than
students without tutoring. Thestudents from both groups reached impasses while performing the
task, but there Was a significant difference between the two groups in the amount of time it took
to resolve these impasses. While both groups acquired the same amount of skill in cases where
[here was anaction constraint violation, the students in Group 1(tutored by REACT) resolved
impasses and acquired thc new knowledge approximatelyten times faster than the studentsin

Group 11. l.ikewise, the students in Group1 were less prone to having goal failurcs than the
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students in Group 11. It was observed that students who did not notice a goal failure the first time
they performeda task were prone to never rcalizing that there was one. A common but
potentially serious problem that has been observedin the Deep Space Network operations
domainis that the Operators may make goal-type errors that arc not detected for several weeks.
For instance, if an Operator does not properly perform certain calibrations on the
communications cq uipment, the data that is acquired during a track will be adversely affected,
but the poor quality of the data may not bc recognized for several weeks by the scientist
analyzing it. It can be extremely difficultto provide corrective feedback toan operator when
there arc such significant delays between the time of the error and the time itis detected, thusit is
very importantto correct goal-type errors during training since. the feedbackin the operationa
cnvironment is so delayed.

Finally, though REACT was shown to be robust in the task domain described here, wc suspect
that it will be necessary to make some improvements to the situated plan attribution problem
spaces 1o cope with larger numbers of plansand actions. 1In the.sc cases wc anticipate the nced to
deal with more ambiguity than was presentin oar current implementation. Ambiguity primarily
will have animpacton the interpretation of plan dependency violation impasses--REACT might
have to delay offering assistance until it is clecar which plan the student isattempting next.

conclusions

Wc have introduced a plan recognition technique called situated plan attribution that we. claim
avoidssome of the problems of other approachces, especially as applied to intelligent tutoring.
Specifically, we have shown how our method is flexible enough torccognize when a situation
warrants anaction that isnot specific.(i by a plan. l.ikewise, it recognizes when an action
specified by aplanisnotsituationally appropriate.

Situated plan attribution also addresses the issues of underconstrained and unfocused modcling
in that it concentrates on recognizing students' impasse points rather than trying to generate or
understand the mental states that led to a particular action. Impasse points arc natural places to
tutor, and the amount of processing required to recogn i ze and explicate the impasse.s wc have

defined is reasonable.
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